Load packages: library(igraph)
library(igraphdata)
library(data.table)
library(tidyverse)
Working with network data in igraph is fairly straightforward. For this tutorial, we’ll start with loading some foodweb networks from the igraphdata
package.
data(foodwebs)
Examine the foodwebs object. It looks like there are multiple networks in this dataset, so first let’s make them into individual network objects.
ChesLower <- foodwebs$ChesLower
ChesMiddle <- foodwebs$ChesMiddle
ChesUpper <- foodwebs$ChesUpper
Let’s check out our igraph object: ChesUpper
. What can we learn about the network from this summary? Is the network directed or undirected? What are the edge and vertex attributes?
IGRAPH babc2a0 DNW- 37 215 -- Upper Chesapeake Bay in Summer
+ attr: Citation (g/c), Author (g/c), URL (g/c), name (g/c), name
| (v/c), ECO (v/n), Biomass (v/n), weight (e/n)
+ edges from babc2a0 (vertex names):
[1] Input ->Net Phytoplankton Input ->Picoplankton
[3] Input ->Microphytobenthos Input ->SAV
[5] Input ->Oysters Input ->Blue Crab
[7] Input ->American Eel Input ->DOC
[9] Input ->Sediment POC Input ->POC
[11] Oysters ->Output Blue Crab ->Output
[13] Menhaden ->Output Bay anchovy->Output
+ ... omitted several edges
Let’s examine the node attributes. V(ChesUpper)
lists all the vertices in the graph.
+ 37/37 vertices, named, from babc2a0:
[1] Net Phytoplankton Picoplankton
[3] Free Bacteria Particle Attached Bacteria
[5] Heteroflagellates Ciliates
[7] Rotifers Meroplankton
[9] Mesozooplankton Ctenophores
[11] Chrysaora Microphytobenthos
[13] SAV Benthic Bacteria
[15] Meiofauna Deposit Feeding Benthos
[17] Suspension Feeding Benthos Oysters
[19] Blue Crab Menhaden
+ ... omitted several vertices
V(ChesUpper)$name
lists all the name
attribute values for the vertices in the graph. Note the difference between the output of these two commands.
[1] "Net Phytoplankton" "Picoplankton"
[3] "Free Bacteria" "Particle Attached Bacteria"
[5] "Heteroflagellates" "Ciliates"
[7] "Rotifers" "Meroplankton"
[9] "Mesozooplankton" "Ctenophores"
[11] "Chrysaora" "Microphytobenthos"
[13] "SAV" "Benthic Bacteria"
[15] "Meiofauna" "Deposit Feeding Benthos"
[17] "Suspension Feeding Benthos" "Oysters"
[19] "Blue Crab" "Menhaden"
[21] "Bay anchovy" "Herrings and Shads"
[23] "White Perch" "Spot"
[25] "Croaker" "Hogchoker"
[27] "American Eel" "Catfish"
[29] "Striped Bass" "Bluefish"
[31] "Weakfish" "DOC"
[33] "Sediment POC" "POC"
[35] "Input" "Output"
[37] "Respiration"
How would you view the Biomass
attribute? This graph currently has one edge attribute: “weight”. How might you examine this attribute?
V(ChesUpper)$Biomass
[1] 1356.000 239.000 649.000 36.000 30.000 66.000
[7] 14.000 3.200 282.000 17.000 0.001 293.000
[13] 2086.000 30.000 700.000 2368.000 27232.000 0.001
[19] 610.000 2136.000 287.000 212.000 282.000 195.000
[25] 50.000 100.000 35.000 450.000 172.000 68.000
[31] 67.000 12504.000 201670.000 5249.000 0.000 0.000
[37] 0.000
E(ChesUpper)$weight
[1] 9.105056e+04 2.267064e+04 2.156480e+04 1.535296e+03 1.000000e-07
[6] 1.196000e+01 2.024000e+00 8.800000e+01 2.428800e+04 9.731000e+03
[11] 1.000000e-07 1.674400e+02 4.416000e+03 3.680000e+02 1.288000e+01
[16] 1.656000e+01 1.159200e+01 2.208000e+01 1.932000e+01 4.232000e+01
[21] 0.000000e+00 0.000000e+00 0.000000e+00 2.493200e+04 5.520000e+03
[26] 4.239268e+04 3.444480e+03 5.987544e+03 8.804400e+03 3.864000e+02
[31] 1.477520e+02 3.126252e+03 1.107680e+02 0.000000e+00 5.391200e+03
[36] 0.000000e+00 7.286400e+03 4.508000e+03 4.574976e+03 3.131680e+04
[41] 0.000000e+00 1.661520e+02 1.218374e+04 3.193688e+03 2.824400e+02
[46] 7.516400e+01 2.598080e+02 6.660800e+01 7.084000e+02 1.444400e+01
[51] 6.541200e+01 2.990920e+02 3.245760e+02 2.928360e+02 0.000000e+00
[56] 0.000000e+00 0.000000e+00 1.518000e+04 9.660000e+02 2.409480e+02
[61] 1.097818e+04 2.054378e+04 1.768608e+04 4.188760e+02 5.234800e+01
[66] 5.234800e+01 3.036000e+03 1.288000e+02 4.912800e+01 2.360904e+03
[71] 5.135992e+03 5.151816e+03 1.288000e+03 2.602680e+04 6.072000e+03
[76] 7.176000e+01 7.176000e+01 2.054360e+03 2.645000e+02 2.645000e+02
[81] 6.072000e+03 6.440000e+01 6.951428e+03 6.951428e+03 1.288000e+02
[86] 1.720400e+02 8.263164e+03 3.841920e+02 3.514400e+01 6.286176e+03
[91] 6.286176e+03 4.876000e+00 1.180360e+02 7.682000e+01 6.992000e+00
[96] 3.473920e+02 3.473920e+02 1.067200e+01 7.682000e+01 6.992000e+00
[101] 1.246600e+02 1.246600e+02 7.083080e+02 5.105080e+02 9.825600e+02
[106] 6.915180e+03 6.319480e+02 9.384000e+00 5.362496e+03 5.362496e+03
[111] 9.200000e-02 2.104960e+02 2.104960e+02 9.016000e+03 3.812480e+03
[116] 1.672560e+03 1.672560e+03 1.535296e+03 1.803200e+03 7.624960e+02
[121] 5.531040e+02 3.812480e+03 6.734400e+01 1.867600e+01 6.458400e+01
[126] 1.656000e+01 9.544356e+03 6.734400e+01 3.735200e+01 2.583360e+02
[131] 6.624000e+01 5.520000e+02 1.775600e+01 1.978000e+01 3.348800e+01
[136] 8.660420e+03 9.622280e+02 4.040640e+02 5.602800e+01 2.583360e+02
[141] 6.624000e+01 6.900000e+02 1.775600e+01 1.141720e+02 1.978000e+01
[146] 3.348800e+01 3.487122e+04 3.487122e+04 1.978000e+01 1.660600e+02
[151] 1.660600e+02 1.978000e+02 8.887200e+01 6.706800e+01 1.348904e+03
[156] 1.348904e+03 1.067200e+01 6.734400e+01 4.673600e+01 3.266000e+01
[161] 5.934000e+01 1.332160e+02 1.592520e+02 1.806328e+03 1.806328e+03
[166] 3.956000e+01 1.110440e+02 2.097600e+01 1.241080e+02 1.241080e+02
[171] 1.186800e+01 2.097600e+01 3.293600e+01 3.293600e+01 1.978000e+01
[176] 8.887200e+01 6.283600e+01 1.072720e+02 1.072720e+02 2.217200e+01
[181] 3.836400e+01 3.836400e+01 7.912000e+00 2.097600e+01 3.213560e+02
[186] 3.213560e+02 5.704000e+00 5.704000e+00 4.038800e+01 4.038800e+01
[191] 3.726000e+01 3.726000e+01 5.032400e+01 5.032400e+01 4.213600e+01
[196] 4.213600e+01 7.463500e+04 1.040520e+04 7.212800e+03 6.862464e+03
[201] 6.734400e+01 1.628400e+01 8.696760e+03 1.304514e+04 6.027840e+03
[206] 2.456400e+01 1.180452e+03 7.498497e+04 9.825600e+02 2.305520e+02
[211] 2.106800e+01 1.867600e+01 6.458400e+01 1.656000e+01 1.380000e+02
You can also add additional node or edge attribute data to the graph object. First, we make vectors of the attribute data based on the names. Let’s make one vector defining whether the node is a crab.
#vector for whether or not the node is a crab
CrabYN <- V(ChesUpper)$name
CrabYN<- ifelse(CrabYN== "Blue Crab", "Y", "N")
Create a new node attribute that describes whether or not the vertex is a type of plankton, a type of bacteria or an “other” organism. Hint: you might consider using the %like%
operator.
OrgType <- V(ChesUpper)$name
#PlanktonYN %>% replace(PlanktonYN, PlanktonYN %like% "plankton", "Plankton")
OrgType<- ifelse(OrgType %like% "plankton","Plankton", ifelse(OrgType %like% "Bacteria", "Bacteria", "Other"))
Next, we can assign these attributes to the nodes in our graph. There are two ways to do this in igraph. You already know one of the ways from the lesson on dataframe manipulation. Assign the OrgType
vector as a node attribute in our ChesUpper
graph.
V(ChesUpper)$OrgType <- OrgType
V(ChesUpper)$OrgType
[1] "Plankton" "Plankton" "Bacteria" "Bacteria" "Other" "Other"
[7] "Other" "Plankton" "Plankton" "Other" "Other" "Other"
[13] "Other" "Bacteria" "Other" "Other" "Other" "Other"
[19] "Other" "Other" "Other" "Other" "Other" "Other"
[25] "Other" "Other" "Other" "Other" "Other" "Other"
[31] "Other" "Other" "Other" "Other" "Other" "Other"
[37] "Other"
igraph also has a built in function to set vertex and edge attributes. Use the function set.vertex.attribute()
to create a new vertex attribute named CrabYN
using the CrabYN
vector.
ChesUpper <- set.vertex.attribute(ChesUpper,"CrabYN", value=CrabYN)
V(ChesUpper)$CrabYN
[1] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "Y"
[20] "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N" "N"
Now check out our graph data again: ChesUpper
. Note that the new node attributes have been appended.
IGRAPH babc2a0 DNW- 37 215 -- Upper Chesapeake Bay in Summer
+ attr: Citation (g/c), Author (g/c), URL (g/c), name (g/c), name
| (v/c), ECO (v/n), Biomass (v/n), OrgType (v/c), CrabYN (v/c), weight
| (e/n)
+ edges from babc2a0 (vertex names):
[1] Input ->Net Phytoplankton Input ->Picoplankton
[3] Input ->Microphytobenthos Input ->SAV
[5] Input ->Oysters Input ->Blue Crab
[7] Input ->American Eel Input ->DOC
[9] Input ->Sediment POC Input ->POC
[11] Oysters ->Output Blue Crab ->Output
+ ... omitted several edges
When the igraph package is loaded, you can simply run the plot()
function on an igraph object and R will know what to do.
##make some quick plots
plot(ChesLower)
plot(ChesMiddle)
plot(ChesUpper)
The default graphical parameters do not look that great. Many nodes are overlapping with one another and the color schemes are not ideal. For now, let’s make the node labels and node size smaller and change the color. The default node size is 15, adjusting it to be smaller.
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, vertex.color="tomato")
We can also turn the node labels completely off.
plot(ChesUpper,vertex.size=20,vertex.label=NA, vertex.color="tomato")
igraph has many different layouts for network visualization. Let’s try out some different layouts. Some of these will be more or less useful depending on the type of network structure you are plotting.
par(mfrow=c(3,2), mar=c(0.2,1,1,0.2))
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout.circle)
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout.star)
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout_as_tree)
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout.auto)
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout_nicely)
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout.grid)
par(mfrow=c(1,1))
Often network visualization uses kamada-kawai or fruchterman-reingold layouts. These layouts are what you will typically see in articles about network analysis.
##The ones we usually use
par(mfrow=c(1,2))
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout.fruchterman.reingold)
plot(ChesUpper,vertex.size=10,vertex.label.cex=0.5, layout=layout.kamada.kawai)
par(mfrow=c(1,1)) #reset parameters
Seems like kamada-kawai might be best suited for this network. Read a little more about force-directed graph drawing here
We can also assign vertex colors based on node attributes. Create a new node attribute of three different colors based on the OrgType
attribute. Then assign this node attribute to the vertex colors and plot the network.
V(ChesUpper)$OrgColor <- ifelse(V(ChesUpper)$OrgType == "Bacteria","tomato", ifelse(V(ChesUpper)$OrgType == "Plankton","royal blue", "dark grey"))
plot(ChesUpper,vertex.size=6,vertex.label=NA, layout=layout.kamada.kawai, vertex.color=V(ChesUpper)$OrgColor)
legend(x="bottomleft", legend=unique(V(ChesUpper)$OrgType), pch=19, cex=0.7, col=unique(V(ChesUpper)$OrgColor))
We can also alter the arrow size, label font and many other plotting parameters to make a more interpretable graph.
plot(ChesUpper,vertex.size=8,vertex.label=NA, layout=layout.kamada.kawai, vertex.color="turquoise",vertex.label.family="Helvetica", vertex.label.color="goldenrod", edge.arrow.size=0.1, vertex.frame.color="corn silk", edge.color="light grey")
In the next section of the lesson, we will explore a dataset of scene interactions from the 1981 Indiana Jones movie, Raiders of the Lost Ark. These data are drawn from the MovieGalaxies database. The edges in this network represent the interactions between characters in this movie.
The first step is to load the data: dat <- read.csv("filepath", header=T, row.names=1)
. You can get the data here.
Take a look at the data: str(LostArk)
'data.frame': 134 obs. of 3 variables:
$ ego : chr "BETSY" "BETSY" "BETSY" "BETSY" ...
$ alter : chr "MEPHISTO" "MARCUS" "ANGELA" "GUTTERBUHG" ...
$ weight: int 1 1 1 1 1 1 2 2 1 1 ...
Or just the dataframe LostArk
ego alter weight
1 BETSY MEPHISTO 1
2 BETSY MARCUS 1
3 BETSY ANGELA 1
4 BETSY GUTTERBUHG 1
5 BETSY POSTMAN 1
6 BETSY TEDDY 1
These data are in an edgelist format. In this format, the first column is the name of the ego node and the second column is the name of the alter. Any additional columns can contain edge attributes such as tie type, strength, value, etc. An edgelist can be converted into an igraph object using the graph.data.frame()
function.
LostArkg<-graph.data.frame(LostArk)
#read more about what this function does
?graph.data.frame
Check out a summary of our data: LostArkg
. Notice the network attributes, such as node names and edge weight. Is this network directed or undirected? How many nodes and edges are in the network?
IGRAPH 78c6559 DNW- 32 134 --
+ attr: name (v/c), weight (e/n)
+ edges from 78c6559 (vertex names):
[1] BETSY ->MEPHISTO BETSY ->MARCUS BETSY ->ANGELA
[4] BETSY ->GUTTERBUHG BETSY ->POSTMAN BETSY ->TEDDY
[7] BETSY ->DASHIELL BETSY ->KEZURE BETSY ->VIRGIL
[10] BETSY ->DEAN COVENTRY BETSY ->INDIANA BETSY ->SCRAGGY
[13] BETSY ->CREW MEMBER BETSY ->CLARE BETSY ->PRIESTLY
[16] BETSY ->JULIA BETSY ->CHARLES BETSY ->PORTER
[19] BETSY ->REBECCA BETSY ->SUN WU KUNG MARCUS->INDIANA
[22] ANGELA->INDIANA ANGELA->PRIESTLY ANGELA->POSTMAN
+ ... omitted several edges
LostArkg
IGRAPH 78c6559 DNW- 32 134 --
+ attr: name (v/c), weight (e/n)
+ edges from 78c6559 (vertex names):
[1] BETSY ->MEPHISTO BETSY ->MARCUS BETSY ->ANGELA
[4] BETSY ->GUTTERBUHG BETSY ->POSTMAN BETSY ->TEDDY
[7] BETSY ->DASHIELL BETSY ->KEZURE BETSY ->VIRGIL
[10] BETSY ->DEAN COVENTRY BETSY ->INDIANA BETSY ->SCRAGGY
[13] BETSY ->CREW MEMBER BETSY ->CLARE BETSY ->PRIESTLY
[16] BETSY ->JULIA BETSY ->CHARLES BETSY ->PORTER
[19] BETSY ->REBECCA BETSY ->SUN WU KUNG MARCUS->INDIANA
[22] ANGELA->INDIANA ANGELA->PRIESTLY ANGELA->POSTMAN
+ ... omitted several edges
Making a network plot of these data is simple: plot(LostArkg)
Looks good, but we can do better.
Adjust the edge arrow size, vertex and label size, colors, or other plotting parameters to make a more legible graph. Look at the plotting parameters for igraph on their website and package vignette to see which aspects of the plot cann be customized.
Network analysis is a powerful tool not only for visualization, but also for understanding power relationships and flows between actors. igraph
includes functions for calculating network, dyadic, and node level statistics. First, let’s calculate some node centrality metrics.
V(LostArkg)$degree <- degree(LostArkg)
V(LostArkg)$betweenness <- betweenness(LostArkg)
Determine whether the default output from degree()
is indegree, outdegree, or all ties. Create additional node attributes for the missing centrality measures. What do these metrics tell you about the roles and interactions between characters in this film?
V(LostArkg)$degree <- degree(LostArkg)
V(LostArkg)$degreeAll <- degree(LostArkg, mode=c("all"))
V(LostArkg)$degreeIn <- degree(LostArkg, mode=c("in"))
V(LostArkg)$degreeOut <- degree(LostArkg, mode=c("out"))
Determine who has the highest betweenness. Use both graphical and statistical methods to identify this character. Does this fit with your understanding of the plot of the movie?
degree(LostArkg) #look at the degree centrality for each node
BETSY MARCUS ANGELA YOUNG MAN TEDDY
20 2 10 8 10
VIRGIL ELDERLY WOMAN SCRAGGY MACGOWAN OLD WOMAN
10 8 10 10 8
CREW MEMBER FIRST DRAFT CHARLES REBECCA JULIA
3 8 10 10 10
SUN WU KUNG INDIANA DRIVER DASHIELL GUTTERBUHG
5 30 2 5 7
POSTMAN WOMAN KEZURE DEAN COVENTRY MEPHISTO
10 8 5 10 4
OLD MAN CLARE PRIESTLY PORTER MAN
8 10 10 5 8
VILLAGER GALBRAITH
2 2
V(LostArkg)[degree(LostArkg)>mean(degree(LostArkg))] #select all the nodes for which the degree is greater than the mean degree
+ 14/32 vertices, named, from 78c6559:
[1] BETSY ANGELA TEDDY VIRGIL SCRAGGY
[6] MACGOWAN CHARLES REBECCA JULIA INDIANA
[11] POSTMAN DEAN COVENTRY CLARE PRIESTLY
V(LostArkg)[degree(LostArkg) == max(degree(LostArkg))] #select the node with the maximum degree
+ 1/32 vertex, named, from 78c6559:
[1] INDIANA
V(LostArkg)[betweenness(LostArkg) == max(betweenness(LostArkg))]
+ 1/32 vertex, named, from 78c6559:
[1] INDIANA
V(LostArkg)[betweenness(LostArkg) == min(betweenness(LostArkg))]
+ 14/32 vertices, named, from 78c6559:
[1] BETSY YOUNG MAN ELDERLY WOMAN SCRAGGY POSTMAN
[6] WOMAN KEZURE DEAN COVENTRY OLD MAN PRIESTLY
[11] PORTER MAN VILLAGER GALBRAITH
betweenness(LostArkg)
BETSY MARCUS ANGELA YOUNG MAN TEDDY
0.0000000 0.8750000 0.8750000 0.0000000 0.8750000
VIRGIL ELDERLY WOMAN SCRAGGY MACGOWAN OLD WOMAN
0.8750000 0.0000000 0.0000000 1.0000000 5.5000000
CREW MEMBER FIRST DRAFT CHARLES REBECCA JULIA
0.5833333 5.5000000 0.8750000 0.8750000 0.8750000
SUN WU KUNG INDIANA DRIVER DASHIELL GUTTERBUHG
12.9583333 171.5000000 18.3333333 4.3333333 7.0833333
POSTMAN WOMAN KEZURE DEAN COVENTRY MEPHISTO
0.0000000 0.0000000 0.0000000 0.0000000 4.9166667
OLD MAN CLARE PRIESTLY PORTER MAN
0.0000000 4.0000000 0.0000000 0.0000000 0.0000000
VILLAGER GALBRAITH
0.0000000 0.0000000
plot(LostArkg,vertex.label.family="Helvetica", vertex.label.cex=0.4, vertex.color="goldenrod",vertex.label.family="Helvetica", vertex.label.color="royal blue", edge.arrow.size=0.1, vertex.frame.color="bisque", edge.color=adjustcolor("light grey",0.2), vertex.size=(V(LostArkg)$betweenness/5+3))
Using nodal attributes, we can compare across the different nodes. Here we plot two different networks sized by indegree and outdegree. How might we interpret these results?
par(mfrow=c(1,2))
plot(LostArkg,vertex.label.family="Helvetica", vertex.label.cex=0.3, vertex.color="goldenrod",vertex.label.family="Helvetica", vertex.label.color="royal blue", edge.arrow.size=0.1, vertex.frame.color="bisque", edge.color=adjustcolor("light grey",.8), vertex.size=(V(LostArkg)$degreeOut*2), edge.width=E(LostArkg)$weight, main="Out degree")
plot(LostArkg,vertex.label.family="Helvetica", vertex.label.cex=0.3, vertex.color="goldenrod",vertex.label.family="Helvetica", vertex.label.color="royal blue", edge.arrow.size=0.1, vertex.frame.color="bisque", edge.color=adjustcolor("light grey",0.8), edge.width=E(LostArkg)$weight, vertex.size=(V(LostArkg)$degreeIn*2), main="In degree")
par(mfrow=c(1,1))
igraph also includes functions for calculating closeness and eigenvector centrality. You can read more about these functions here
There are numerous community detection algorithms for network analysis in igraph. These algorithms allow analyists to divide a network into smaller communities for analysis of the modularity and connectedness of various subgroups. Different algorithms will be appropriate depending on which analysis you intend to conduct. Some available igraph functions include: infomap.community()
, edge.betweenness.community()
, fastgreedy.community()
and others. Here we will use the spinglass.community()
function to identify subgroups in our network.
#set seed and run community detection algorithm
set.seed(1000)
sg1 <- spinglass.community(LostArkg)
##plot communities with shaded background for each community
plot(sg1, LostArkg,
col=membership(sg1),
mark.groups=communities(sg1),
vertex.size=15,
vertex.label=NA,
edge.arrow.size=0.5,
main="Scene interaction communities")
#plot network colored by community
plot(LostArkg,
vertex.color=membership(sg1),
vertex.size=15,
vertex.label.cex=0.3, vertex.label.family="Helvetica", vertex.frame.color="white", vertex.label.color="black",
edge.arrow.size=0.2,
edge.width=E(LostArkg)$weight,
main="Scene interaction communities")
We can also compare the community detection algorithms across several different methods. The best algorithm to use will depend on the network type and your interpretation of the results. Try running and plotting two other community detection algorithms (check out the package documentation if you are stuck). Which algorithm do you think best explains the interactions between characters in this film? If you were to name or describe each detected community, what would you call them?
#set.seed(1000)
#fg <- fastgreedy.community(LostArkg) #only works on undirected graphs
set.seed(1000)
wt <- walktrap.community(LostArkg)
set.seed(1000)
eb<- edge.betweenness.community(LostArkg)
par(mfrow=c(1,3))
plot(LostArkg,
vertex.color=sg1$membership,
vertex.size=15,
vertex.label.cex=0.3, vertex.label.family="Helvetica", vertex.frame.color="white", vertex.label.color="black",
edge.arrow.size=0.2,
edge.width=E(LostArkg)$weight,
main="Spinglass")
plot(LostArkg,
vertex.color=eb$membership,
vertex.size=15,
vertex.label.cex=0.3, vertex.label.family="Helvetica", vertex.frame.color="white", vertex.label.color="black",
edge.arrow.size=0.2,
edge.width=E(LostArkg)$weight,
main="Edge Betweenness")
plot(LostArkg,
vertex.color=wt$membership,
vertex.size=15,
vertex.label.cex=0.3, vertex.label.family="Helvetica", vertex.frame.color="white", vertex.label.color="black",
edge.arrow.size=0.2,
edge.width=E(LostArkg)$weight,
main="Walktrap")
par(mfrow=c(1,1))
Let’s go back to the Chesapeake Bay foodweb data to analyze the reciprocity in the network. Reciprocity is often of interest to anthropologists, whether we study food sharing, social support, or other interactions. Advanced network analysis can also include assessing transitivity and triangles.
reciprocity(ChesUpper) # what proportion of ties are reciprocated
[1] 0.1401869
dyad_census(ChesUpper) # the number of dyads that are mutual, asymmetrical or null
$mut
[1] 15
$asym
[1] 184
$null
[1] 467
We can also calculate the average and shortest path lengths. Let’s find the shortest path between Blue Crabs and Free Bacteria.
mean_distance(ChesUpper, directed=T)
[1] 13997.97
V(ChesUpper)$name
[1] "Net Phytoplankton" "Picoplankton"
[3] "Free Bacteria" "Particle Attached Bacteria"
[5] "Heteroflagellates" "Ciliates"
[7] "Rotifers" "Meroplankton"
[9] "Mesozooplankton" "Ctenophores"
[11] "Chrysaora" "Microphytobenthos"
[13] "SAV" "Benthic Bacteria"
[15] "Meiofauna" "Deposit Feeding Benthos"
[17] "Suspension Feeding Benthos" "Oysters"
[19] "Blue Crab" "Menhaden"
[21] "Bay anchovy" "Herrings and Shads"
[23] "White Perch" "Spot"
[25] "Croaker" "Hogchoker"
[27] "American Eel" "Catfish"
[29] "Striped Bass" "Bluefish"
[31] "Weakfish" "DOC"
[33] "Sediment POC" "POC"
[35] "Input" "Output"
[37] "Respiration"
BlueCrabtoFreeBacteria <- shortest_paths(ChesUpper,
from = V(ChesUpper)[name=="Blue Crab"],
to = V(ChesUpper)[name=="Free Bacteria"],
output = "both")
# highlight shortest path. Adapted from: https://kateto.net/wp-content/uploads/2016/01/NetSciX_2016_Workshop.pdf
edgecolors <- rep("light gray", ecount(ChesUpper))
edgecolors[unlist(BlueCrabtoFreeBacteria$epath)] <- "turquoise"
edgewidth <- rep(2, ecount(ChesUpper))
edgewidth[unlist(BlueCrabtoFreeBacteria$epath)] <- 4
vertexcolors <- rep("light gray", vcount(ChesUpper))
vertexcolors[unlist(BlueCrabtoFreeBacteria$vpath)] <- "turquoise"
vertexnames<- rep(NA, vcount(ChesUpper))
vertexnames[unlist(BlueCrabtoFreeBacteria$vpath)] <- names(unlist(BlueCrabtoFreeBacteria$vpath))
plot(ChesUpper, vertex.color=vertexcolors, edge.color=edgecolors,
edge.width=edgewidth, edge.arrow.mode=0, layout=layout.kamada.kawai, vertex.label=vertexnames, vertex.size=5, vertex.label.cex=0.8, vertex.label.dist=2)
There is a ton more that you can do with networks in R. igraph, as covered here, is particularly helpful for network visualizations. If you are interested in going further into network statistics check out the statnet packages.